
Hunting For AWS Cognito Security 
Misconfigurations
Yassine Aboukir (@yassineaboukir)



Introduction

Yassine Aboukir (@yassineaboukir)

● Application security consultant.
● Pentester at HackerOne.
● Bug Bounties (since 2014): HackerOne Top 20, 

H1-303 MVH & 1st place.
● ex- HackerOne Triage (2017 - 2019).
● Digital nomad (5 years & Over 40 countries).



Introduction to AWS Cognito

With Amazon Cognito, you can add user sign-up and sign-in features and control access to your web 

and mobile applications. 

Amazon Cognito provides an identity store that scales to millions of users, supports social and 

enterprise identity federation, and offers advanced security features to protect your consumers and 

business.

Source: https://aws.amazon.com/cognito/



Introduction to AWS Cognito

Amazon Cognito makes it easier for you to manage user identities, authentication, and permissions. It 

consists of two main components:

● User Pools: allow sign-in and sign-up functionality.

● Identity Pools: allow authenticated and unauthenticated users to access AWS resources using 

temporary AWS credentials.



Introduction to AWS Cognito

Source: https://aws.amazon.com/blogs/mobile/building-fine-grained-authorization-using-amazon-cognito-user-pools-groups/



How to tell if an application is using Amazon Cognito?

API calls to AWS Cognito API endpoint

● Yellow: API calls to user pool.

● Green: API calls to identity pool.



Security misconfiguration #1: Unauthorized access to AWS 
services due to Liberal AWS Credentials 

1. Try to fetch temporary AWS credentials using unauthenticated user

To generate the AWS credentials, we need to find Identity Pool ID which is usually hardcoded in the 

source code, in a bundled JS file or in HTTP response. Other useful information that you can find:

● Client ID

● User Pool ID

● Region

Identity Pool IDClient IDUser Pool IDRegion



Security misconfiguration #1: Unauthorized access to AWS 
services due to Liberal AWS Credentials 

1. Try to fetch temporary AWS credentials using unauthenticated user

Using Burpsuite, search for a variation of the following keywords in the HTTP history:

Aws_cognito_identity_pool_id

identityPoolId

cognitoIdentityPoolId

userPoolWebClientId

userPoolId

aws_user_pools_id

These hardcoded IDs aren’t considered sensitive on their own!



Security misconfiguration #1: Unauthorized access to AWS 
services due to Liberal AWS Credentials 

1. Try to fetch temporary AWS credentials using unauthenticated user

Next step is to use the Pool Identity ID to generate an Identity ID. Use AWS-Cli 

(https://github.com/aws/aws-cli) as follows:

$ aws cognito-identity get-id --identity-pool-id <identity-pool-id> --region <region>



Security misconfiguration #1: Unauthorized access to AWS 
services due to Liberal AWS Credentials 

1. Try to fetch temporary AWS credentials using unauthenticated user

Next step is to use the previous Identity ID to generate AWS credentials. Use AWS Cli as follows:

$ aws cognito-identity get-credentials-for-identity --identity-id <identity-id> --region <region>



Security misconfiguration #1: Unauthorized access to AWS 
services due to Liberal AWS Credentials 

1. Try to fetch temporary AWS credentials using unauthenticated user

Now, we can enumerate permissions associated with these credentials using a tool such as:

● Enumerate-iam: https://github.com/andresriancho/enumerate-iam

● Scout Suite: https://github.com/nccgroup/ScoutSuite

$ ./enumerate-iam.py --access-key <AccessKeyID> --secret-key <SecretKey> --session-token 
<SessionToken>

Enumerated permissions

https://github.com/andresriancho/enumerate-iam
https://github.com/nccgroup/ScoutSuite


Security misconfiguration #1: Unauthorized access to AWS 
services due to Liberal AWS Credentials 

1. Try to fetch temporary AWS credentials using unauthenticated user

You could enumerate all sort of permissions that allows unauthenticated user to access AWS services:

● dynamodb.list_backups()

● dynamodb.list_tables()

● lambda.list_functions()

● s3.list_buckets()

● etc.



Security misconfiguration #1: Unauthorized access to AWS 
services due to Liberal AWS Credentials 

If the unauthenticated role is explicitly disabled. You’ll will receive similar error:

NotAuthorizedException: Unauthenticated access is not supported for this identity pool.



Security misconfiguration #1: Unauthorized access to AWS 
services due to Liberal AWS Credentials 
2. Try to fetch temporary AWS credentials using authenticated user

Assuming unauthenticated user is disabled and you either can sign up or have access to an authenticated 

account. Observe the HTTP traffic upon successful authentication:

Id_token is exchanged for 
temporary AWS credentials:
● AccessKeyId
● SecretKey
● SessionToken



Security misconfiguration #2: Authentication bypass due to 
enabled Signup API action

Applications not offering user signup and only supporting administrative provision of accounts could be 

vulnerable as a result of not disabling signup API action. 

This includes admin login portals which implement AWS cognito allowing authentication bypass as a 

result.



Security misconfiguration #2: Authentication bypass due to 
enabled Signup API action

Self-registration enabled by default when creating a new user pool



Security misconfiguration #2: Authentication bypass due to 
enabled Signup API action

We only need the client ID and region to test against the self-registration.

$ aws cognito-idp sign-up --client-id <client-id> --username <email-address> --password <password> 
--region <region>

Successful singup

Failed signup



Security misconfiguration #2: Authentication bypass due to 
enabled Signup API action

We only need the client ID and region to test against the self-registration.

AWSCognitoIdentityProviderService.SignUp



Security misconfiguration #2: Authentication bypass due to 
enabled Signup API action

In case of a successful self-registration, a 6 digits confirmation code will be delivered to the attacker’s 
email address. 

$ aws cognito-idp confirm-sign-up --client-id <client-id> --username <email-address> --confirmation-code 
<confirmation-code> --region <region>

You’ll need to confirm the account next.



Security misconfiguration #2: Authentication bypass due to 
enabled Signup API action

You can also directly call the Cognito API endpoint as follows:

AWSCognitoIdentityProviderService.ConfirmSignUp



Security misconfiguration #2: Authentication bypass due 
to enabled Signup API action

Sometimes, you might successfully be able to signup and register an account but it doesn’t have any 

user group assigned. However, you will be able to obtain temporary AWS credentials which you can test 

against liberal permissions as we explained earlier.



Security misconfiguration #3: Privilege escalation 
through writable user attributes 

Attributes are pieces of information that help you identify individual users, such as name, email address, 

and phone number. A new user pool has a set of default standard attributes. 



Security misconfiguration #3: Privilege escalation 
through writable user attributes 

You can also add custom attributes to your user pool definition in the AWS Management Console.



Security misconfiguration #3: Privilege escalation 
through writable user attributes 

Unless set as readable only, the new custom attribute permission is writable by default which allows the user 
to update its value.



Security misconfiguration #3: Privilege escalation 
through writable user attributes 

1. Fetching user attributes

In order to test against this misconfiguration, you need to be authenticated then we’ll fetch the available 

user attributes using the generated access token (Check Authorization header).

$ aws cognito-idp get-user --region <region> --access-token <access-token>



Security misconfiguration #3: Privilege escalation 
through writable user attributes 

1. Fetching user attributes



Security misconfiguration #3: Privilege escalation 
through writable user attributes 

AWSCognitoIdentityProviderService.GetUser
1. Fetching user attributes

Look out for custom 

attributes such as:

custom:isAdmin

custom:userRole

custom:isActive

custom:isApproved

custom:accessLevel



Security misconfiguration #3: Privilege escalation 
through writable user attributes

2. Updating user attributes

$ aws cognito-idp update-user-attributes --access-token <access-token> --region <region> --user-attributes 
Name="<attribute-name>", Value="<new-value>"

AWSCognitoIdentityProviderService.UpdateUserAttributes



Security misconfiguration #3: Privilege escalation 
through writable user attributes



Security misconfiguration #4: Updating email attribute 
before verification
There scenarios where the user isn’t allowed to update their email address due to both client and server-side 

security controls. However, by leveraging Cognito API, it might also be possible to bypass this restriction. 

$ aws cognito-idp update-user-attributes --access-token <access-token> --region <region> --user-attributes 
Name="email", Value="<new-email-address>"



This is especially bad when verification isn’t required.

If the email is relied upon for authorization and access control, this will result in horizontal and vertical 
privilege escalation.

Security misconfiguration #4: Updating email attribute 
before verification



Even with email verification enabled, most applications will update the email attribute value to the 
new unverified email address.

Security misconfiguration #4: Updating email attribute 
before verification



This is bad because the user will be still be able to login and obtain an authenticated access token using 

the unverified email address. 

Many application do not necessarily check if email_verified is set to True or False. Therefore, this would 

bypass any security controls that relies on email domain for authorization, hence privilege escalation.

Security misconfiguration #4: Updating email attribute 
before verification



AWS has introduced a new security configuration to mitigate this issue, so if you have

 Keep original attribute value active when an update is pending explicitly enabled the email attribute will 

not be updated to the new email address until it is verified.

This is a new security configuration that was only introduced after June 2022 which means a lot of 

applications might still be misconfigured.

Security misconfiguration #4: Updating email attribute 
before verification



https://hackerone.com/reports/1342088

Security misconfiguration #4: Updating email attribute 
before verification



1. User victim email is: jack@domain.com

2. Updating email was not possible, but using Cognito API, researcher managed to update their 
email to Jack@domain.com 

Misconfigurations:
● Email attribute is writable so it’s possible to update it via Cognito API.
● Email attribute is case-sensitive which could have been set to insensitive from AWS console.

3. Attacker authenticates to Jack@domain.com

Misconfigurations:
● email_verified attribute value wasn’t checked if it’s True.
● Keep original attribute value active when an update is pending wasn’t enabled.

4. Flickr normalizes Jack@domain.com email to jack@domain.com (victim) resulting in ATO.

Security misconfiguration #4: Updating email attribute 
before verification

mailto:jack@victim.com
mailto:Jack@victim.com
mailto:Jack@victim.com
mailto:Jack@victim.com
mailto:jack@victim.com


Recommendations for developers

● Remove sensitive details from server responses, including Cognito Identity Pool Id.

● Disable Signup on AWS Cognito if not required.

● Disable unauthenticated role if not required.

● Review IAM policy attached to the authenticated and unauthenticated role to ensure least 

privilege access.

● Evaluate all user attributes and disable writing permission if not necessary.

● Remember that the email attribute value may hold an unverified email address.



Thank you!
Reach out on Twitter @yassineaboukir

Or https://yassineaboukir.com

https://twitter.com/yassineaboukir
https://yassineaboukir.com

