
Top-Tier Bug Bounty Hunter Mindset
Yassine Aboukir (@yassineaboukir)

Introduction

Yassine Aboukir (@yassineaboukir)

● Master graduate (MSc in business and corporate
finance & MSc in management of information
systems).

● Application security consulting.
● Bug bounties: HackerOne Top 20, H1-303 MVH & 1st

place.
● ex- HackerOne triage (from 2017 to 2019).
● Digital nomad for over 5 years (Around 40

countries).

How I got into bug bounties

Had a very wrong idea of responsible disclosure 😰#irresponsibledisclosure

Source: https://www.exploit-db.com/?author=3311

How I got into bug bounties
Signed up on HackerOne bug bounty platform in 2013

First bug on Yahoo! Resetting the vote counter

1. Changing vote_value from 1 to 1600

2. Voting

Votes reset to 0

First bug on Yahoo! Resetting the vote counter

First bug on Yahoo! Resetting the vote counter

May 8th 2014
Resolved and
awarded $400
bounty.

Feb 28th 2014
Report
submitted to
Yahoo.

First bug on Yahoo! Resetting the vote counter

The journey was bumpy and frustrating..

N/A for various reasons:
- Lack of security impact.
- Out of scope.
- False positive.
- Poor communication.
- And mostly dumb bugs 😬

The journey was bumpy and frustrating..

Fast forward to 2015

In 2015, made it to HackerOne top 100 with a horrible signal (1.60/5 🤫)

Fast forward to 2016
● In 2016, made it to HackerOne first official live hacking event (H1-702) in Las Vegas, USA.

● It was an inspiring and humbling experience but the imposter syndrome felt strong.

● This is when I realized that I’ve been stagnant and that I need to improve the quality of my

findings as well as to improve the methodology and techniques employed.

Right, after H1-702 live hacking event found my first critical RCE.

Bounty: $3100 USD

Classic!

Fast forward to 2022

All-time stats Past 90 days (Live hacking events)

● Working as an interface between bug bounty programs and security researchers triaging incoming

security reports for different organizations: Airbnb, US military, Spotify, Sony, PayPal, Slack, etc.

● We received huge number of garbage reports, informative issues and false positives and only a good

number of quality submissions coming from the same researchers.

● A lot of people have poor understanding of CVSS, or submit reports with arbitrary and inflated

severity scores.

● A lot of triage frustration originates from poor and unclear communication with bug bounty programs.

● Every organization has its own threat model so what you perceive as a security risk might not be

assessed with as much severity.

HackerOne Triage (2017 - 2019) 🕹

https://emojipedia.org/joystick/

Common Bug Hunting Methodologies

Full automated
and

unauthenticated

0-day all the
things!The 50/50Full manual

Common Bug Hunting Methodologies

Full automated
and

unauthenticated

0-day all the
things!The 50/50Full manual

Which is best?

Common Bug Hunting Methodologies

Full automated
and

unauthenticated

0-day all the
things!The 50/50Full manual

Eric @todayisnew Ron @ngalog Frans @fransrosen Shubs @shubs

Which is best?

Successful and million dollar bug hunters in each category.

Common bug hunting methodologies

$100K in bounties

Bugs count Severity Total bounty

1 Critical $100K

2 Critical $50K

10 High/Critical $10K

20 Medium/High $5K

100 Low/Medium $1K

200 Low/Medium $500

A top tier bug hunter will try to maximize their returns with minimum reports → aim for impact

Focus on P1 / P2 bugs

P1 – Critical P2 – High

Remote Code Execution (RCE)
SQL Injection

XML External Entity Injection (XXE)
Server-Side Request Forgery (SSRF)

Authentication Bypass
Disclosure of Secrets
Command Injection

Stored XSS
Admin privilege escalation

OAuth misconfiguration
Sensitive information disclosure

Insecure Direct Object Reference (IDOR)

Focus on P1 / P2 bugs

Quick triage
and resolution

High monetary
rewards

Avoid duplicates
and related
frustration

Hacking on Healthy & High-Paying Programs

Hacking on healthy &
high-paying programs

Top bounty

Average bounty

Bugs resolved

Total Hackers

Intimidating numbers!

Source: https://hackerone.com/paypal

Hacking on healthy and high-paying programs

Tiktok Dropbox Epic Games Github

Reddit Instacart Stripe Uber

● Unlike what is commonly thought, reconnaissance is not only about subdomains enumeration.

● Automated/manual spidering the web application for easy visualization of assets and

functionalities (Burpsuite sitemap).

● Context-adapted wordlists instead of a generic list when fuzzing endpoints or directories

(https://wordlists.assetnote.io/).

● Expand the scope and attack surface such as decompiling mobile apps, browser extensions,

desktop apps for interesting leads.

In-depth Reconnaissance

https://wordlists.assetnote.io/

● JavaScript files offer a wealth of valuable leads and insights (Endpoints, parameters,
hardcoded credentials, expired domain names, postmessage misconfigurations, etc.)

In-depth Reconnaissance

Linkfinder.pyBurpsuite proxy history

In-depth Reconnaissance

● Endpoint for a new feature found in JS file:

/partner-connect?usecase=entertainment&path=/

● When you navigate to it, it redirects to:

https://entertainment.redacted.com/?assertion=eyJlbmMi<access_token>

● path parameter was vulnerable to open redirect which results in leaking the user’s access token.

● Navigating to /partner-connect?usecase=entertainment&path=.example.com results in:

https://entertainment.redacted.com.example.com/?assertion=eyJlbmMi<access_token>

In-depth Reconnaissance
● Enumerating hidden HTTP parameters and request headers

Paraminer Burpsuite extension

In-depth Reconnaissance

● Enumerating application endpoints using Gau tool which fetchs known URLs from AlienVault's
Open Threat Exchange, the Wayback Machine, and Common Crawl.

https://github.com/lc/gau

In-depth Reconnaissance

● Continuously monitoring for new changes and ephemere assets.

https://github.com/robre/jsmon

Manual Security Testing

● Automation obsession distracts bug hunters from in-depth and creative manual security testing.

● The core application usually has more importance and priority.

Source: Dropbox bounty table

Manual Security Testing

● Functionality or feature oriented security testing VS vulnerability class oriented.

● Focused manual testing requires deep understanding of the inner workings of the application.

● Be ready to go the distance: subscribe to paid plans, configure SSO, order hardware device, read the

documentation, etc.

Manual Security Testing
Bug 1: Account takeover due to broken authentication on a 3 year old program - $20,000

1. User navigates to login page:
https://developer.redacted.com/sign-in/

2. User is redirected to an OAuth flow:
https://developer.redacted.com/identity/login?correlation_id=bd5594db7f281fdb15fc4e2c2191860cca
d95a9148e600054560ed24f6ef2896&client_id=982f232fe94f43719efde74fce295552&authCorrelati
onId=bd5594db7f281fdb15fc4e2c2191860ccad95a9148e600054560ed24f6ef2896&prompt=login

3. User enters e-mail address & password then login.
4. User is redirected to:

https://developer.redacted.com/identity/login-callback?authCorrelationId=f7cf8d08665d0ab47976c33
4586f640b7cf85988a0eaca0284a11578f20b4143

5. The server returns authorization code:
https://developer.redacted.com/identity/auth-callback?code=8086e67c8c0846ef8c4207aa1bcd0b60&
state=VTJGc2RHVmtYMSthMi9iblV6cGRJaGI1b1ZnS3IyOGh0VW84KzhKN2FrdDZoV0xSN3phWWtoamt
6YU8yY3IySFV5MVpZaEl4UGxvSFQzT3ROV25zemN6SzNKTFdXaHRlaXlncDJHRVE5dU09&correlation
_id=e070d10492afe5c53c5e3e17ac5bcdd88a45206196f9554e049f7550787038d0

6. User is logged in.

Manual Security Testing

(1) https://developer.redacted.com/identity/login?correlation_id=bd5594db7f281fdb15fc4e2c2191860cca
d95a9148e600054560ed24f6ef2896&client_id=982f232fe94f43719efde74fce295552&authCorrelati
onId=bd5594db7f281fdb15fc4e2c2191860ccad95a9148e600054560ed24f6ef2896&prompt=login

(2) https://developer.redacted.com/identity/login-callback?authCorrelationId=f7cf8d08665d0ab47976c33
4586f640b7cf85988a0eaca0284a11578f20b4143

(3) The server returns authorization code:
https://developer.redacted.com/identity/auth-callback?code=8086e67c8c0846ef8c4207aa1bcd0b60&
state=VTJGc2RHVmtYMSthMi9iblV6cGRJaGI1b1ZnS3IyOGh0VW84KzhKN2FrdDZoV0xSN3phWWtoamt
6YU8yY3IySFV5MVpZaEl4UGxvSFQzT3ROV25zemN6SzNKTFdXaHRlaXlncDJHRVE5dU09&correlation
_id=e070d10492afe5c53c5e3e17ac5bcdd88a45206196f9554e049f7550787038d0

(1) Attacker will generate a login link
with valid correlation_id then send it to
victim.
(2) Attacker will automate a loop
requesting the OAuth endpoint with
correlation_id and waiting for victim to
login.

(2) When victim logs in, authCorrelationId
will be authenticated and will return
authorization code for the attacker.

Manual Security Testing
Bug 2: zero Interaction Account takeover due to broken SSO - $55,000 (W/ @0xacb)

● The application offered Single-Sign On (SSO) as a pro paid feature and it also required
following a number of steps to properly configure it.

● We add the targeted user’s email to our Okta instance as a new active user, then we simply tried to
initiate SSO flow with our account.

● We were prompted to login to our Okta so we signed in to the Okta account associated with victim’s
email

● This caused identity conflict and the application logged us into the victim’s account.

Manual Security Testing
Bug 3: Full read SSRF on API - $30,000

● Requires reading the API documentation to find the
lead and reproduce the vulnerable HTTP request.

● Requires setting up a separate user account and
explicitly assigning it API access, otherwise access will
be denied for admin accounts.

● Requires generating valid API credentials.

● Classic SSRF payloads won’t work

Manual Security Testing
Full read SSRF on API - $30,000

● Bypass using IPv6:

"url": "http://[::]:80/",

Local loopback address

Automation

Automating vulnerability
discovery

Active and passive vulnerability
scanning and discovery.

Automating recon and
content discovery

Enumerating subdomains, DNS
records, port scanning, directories
and files enumeration, technology
fingerprinting, etc.

Automating changes
monitoring

Monitoring for new changes such
as HTTP headers, JS file changes,
new subdomains, opening ports,
etc.

Automating repetitive tasks

Everyday boring repetitive tasks
such as decompiling an APK file,
enumerating IAM, PoC or exploit,
etc.

Automation

Automating vulnerability
discovery

nuclei, nikto, backlash powered
scanner, burpsuite scanner, active
scan++, osmedeus

Automating recon and
content discovery

amass, hakrawler, httpX, dnsX,
ripgen, dnsgen, nmap, masscan,
fuff, linkfinder, dirsearch,
findomain, naabu, gau

Automating changes
monitoring

amass, sublert, jsmon

Automating repetitive tasks

Authorize, smuggler, sqlmap, etc.

Automation
Loading Scope
bbscope

Step 1

Subdomain Enumeration
Amass, subfinder, sublist3r, findomain, etc.

Step 2

Permutation
altdns, ripgen, dnsgen

Step 3

DNS Resolution
massdns, puredns, dnsx

Step 4

DNS Enumeration
dnsX

Step 5

Port Scanning
nmap, naabu, masscan

Step 6

Vulnerability Scanning
Nuclei, Nikto, Burpsuite scanner, Active
Scan++, etc.

Step 7

Simple reconnaissance flow

Automation

● Stack: Python,
Django, Luigi,
Bootstrap,
Postgres

● Open Source
tools: Nmap,
Amass, httpX,
Nuclei, etc.

Building a full fledged automation web app called recontrol.io with @m4ll0k

Automation
Building recontrol.io with @m4ll0k

Automation
Building recontrol.io with @m4ll0k

Automation

● Excessive number of open source bug bounty and reconnaissance related tools.

● Automation is complementary and should never substitute manual security testing.

● Efficient automation should yield actionable information/intel and minimize false positive.

● The challenge is tasks orchestration (Luigi, Prefect, Airflow), load distribution across multiple

servers (Kubernetes, fleet, Axiom, etc.).

● Most bug bounty automations only catch low-hanging fruit which only results in duplicates.

● Many automation frameworks already exist: reconFTW, Osmedeus, reNgine, Axiom etc.

● Nuclei is an amazing open source tool but solely and blindly running its public templates on

bug bounty programs isn’t an effective approach.

Security Impact

XSS - Hijacking user’s session token
VS

XSS - Simple alert popup
Session token had
HttpOnly flag set
but it was easy to
bypass because the
token was also leaked
and hardcoded in
user’s authenticated
webpage.

Security Impact
● Bug bounty is not a traditional pentest and demonstrating security impact is crucial.

● Always ask this question: what’s the worst thing an attacker can do with this vulnerability? Remember no

impact, no bug!

● Most companies pay out bounties based on CVSS score (CIA triad) - the more security impact your

demonstrate, the more bounty you get.

● Think out of the box and coming up with creative ideas and plans to execute in order to escalate security

impact.

● Save low-hanging fruit for future attack chains: open redirect, cookie injection, XSS without security

impact, header injection, etc.

● Make sure you abide by program rules. Some forbid:

1. pivoting in their internal network.
2. executing dangerous commands.
3. accessing other users’ data.
4. or they have a specific SSRF sheriff endpoint.

Code Review & Security Research

● Writing and reading code might not be indispensable to get into bug bounties but it is crucial to stay

relevant and gain a competitive edge.

● Black-box testing is fun and challenging but through white-box testing, you’ll likely find a lot more

bugs.

● Even some client-side bugs require certain code understanding: DOM-based XSS, postmessage

misconfigurations, regex and validation bypasses, etc.

● Searching for 0-day vulnerabilities in popular projects which are widely used across bug bounty

programs (Jenkins, Gitlab, Github, Wordpress, OpenVPN, SonicWall and other SSL VPNs, etc.).

● For bug bounties, better search for pre-authenticated or unauthenticated vulnerabilities.

Code Review & Security Research
● Monitoring for new CVEs and reverse engineering public security patches to build the exploit.

CVE-2022-36804 -
Atlassian Bitbucket
Command Injection

Code Review & Security Research

Resources:

- So you want to be a web security researcher? by James Kettle

https://portswigger.net/research/so-you-want-to-be-a-web-security-researcher

- Assetnote blog security advisories https://blog.assetnote.io/

- OWASP Code review guide V2.

- Pentesterlab code review exercises https://pentesterlab.com/exercises

- The Advanced Web Attacks and Exploitation (AWAE) course by Offensive Security.

https://portswigger.net/research/so-you-want-to-be-a-web-security-researcher
https://blog.assetnote.io/
https://pentesterlab.com/exercises

Collaboration
● The best and most impactful bugs I’ve seen or that I’ve reported myself were a result of hacker

collaboration.

● Everyone brings a different skill set and testing perspective to the table.

● Bug bounty platforms recognized the important role of hacker collaboration by building features

to support it (Invite collaborator, bounty split, best collaboration award).

● If you’re stuck somewhere while hacking, find a relevant person to share your leads with. Check

out discord and slack communities!

● Upfront agreement on the terms such as sharing or using the research as well as the bounty

split (50/50 split is standard).

Collaboration

I had received a DM from @thaivd98 regarding a P4 SSRF

Collaboration

Collaboration

pointing URL parameter to 127.0.0.1:80

Collaboration

Trying to hit AWS metadata endpoint by pointing URL
to 169.254.169.254 Returns 401 - Unauthorized

Collaboration

EC2 Instance Metadata Service v1 (IMDSv1):
allows reaching the metadata endpoint located at http://169.254.169.254 with a simple GET
request within the instance.

EC2 Instance Metadata Service v2 (IMDSv2): our target was using this version.

http://169.254.169.254/

Collaboration
● Atlassian gadgets use the new Google gadgets.* API defined by the OpenSocial specification.

● This endpoint takes in various other parameters such as: httpmethod, postData and headers to

name a few.

● Send a PUT to http://169.254.169.254/latest/api/token along with

X-aws-ec2-metadata-token-ttl-seconds: 21600 header Returns auth token

https://developers.google.com/gadgets
http://169.254.169.254/latest/api/token

Collaboration
● Sending an authenticated GET request along with previous token in X-aws-ec2-metadata-token

header in order to exfiltrate the EC2 security credentials from

http://169.254.169.254/latest/meta-data/identity-credentials/ec2/security-credentials/ec2-instance

Returns security credentials

http://169.254.169.254/latest/meta-data/identity-credentials/ec2/security-credentials/ec2-instance

Collaboration
January 2016

Collaboration

April 2016

Collaboration

Friendly public feud with @nahamsec over HackerOne leaderboard rankings 😂

Last words

● Bug hunting is not a race but a marathon, it requires consistency, persistence and patience.

● Take as many notes as you can when you’re hacking because these insights can be leveraged at any

given moment.

● Keep learning, acquiring knowledge and diversifying your skillset: hardware, mobile apps, smart

contracts, reverse engineering, etc.

● Bug bounty hunting can easily drain your mental health so make sure to have have fun and enjoy the

journey.

THANK YOU!

@yassineaboukir

